extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C42⋊2C2) = C2.(C8⋊8D4) | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 128 | | C4.1(C4^2:2C2) | 128,665 |
C4.2(C42⋊2C2) = C2.(C8⋊7D4) | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 64 | | C4.2(C4^2:2C2) | 128,666 |
C4.3(C42⋊2C2) = C2.(C8⋊D4) | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 128 | | C4.3(C4^2:2C2) | 128,667 |
C4.4(C42⋊2C2) = C2.(C8⋊2D4) | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 64 | | C4.4(C4^2:2C2) | 128,668 |
C4.5(C42⋊2C2) = C24.Q8 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 16 | 8+ | C4.5(C4^2:2C2) | 128,801 |
C4.6(C42⋊2C2) = M4(2).15D4 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 32 | 8- | C4.6(C4^2:2C2) | 128,802 |
C4.7(C42⋊2C2) = (C2×C8).D4 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 16 | 8+ | C4.7(C4^2:2C2) | 128,813 |
C4.8(C42⋊2C2) = (C2×C8).6D4 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 32 | 8- | C4.8(C4^2:2C2) | 128,814 |
C4.9(C42⋊2C2) = C23.544C24 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 64 | | C4.9(C4^2:2C2) | 128,1376 |
C4.10(C42⋊2C2) = C23.545C24 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 128 | | C4.10(C4^2:2C2) | 128,1377 |
C4.11(C42⋊2C2) = C42⋊15Q8 | φ: C42⋊2C2/C42 → C2 ⊆ Aut C4 | 128 | | C4.11(C4^2:2C2) | 128,1595 |
C4.12(C42⋊2C2) = C8⋊C4⋊17C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 4 | C4.12(C4^2:2C2) | 128,573 |
C4.13(C42⋊2C2) = C2.D8⋊4C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.13(C4^2:2C2) | 128,650 |
C4.14(C42⋊2C2) = C4.Q8⋊9C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.14(C4^2:2C2) | 128,651 |
C4.15(C42⋊2C2) = C4.Q8⋊10C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.15(C4^2:2C2) | 128,652 |
C4.16(C42⋊2C2) = C2.D8⋊5C4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.16(C4^2:2C2) | 128,653 |
C4.17(C42⋊2C2) = C42.427D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 16 | 4 | C4.17(C4^2:2C2) | 128,664 |
C4.18(C42⋊2C2) = C23.12D8 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.18(C4^2:2C2) | 128,807 |
C4.19(C42⋊2C2) = C24.88D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.19(C4^2:2C2) | 128,808 |
C4.20(C42⋊2C2) = C24.89D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.20(C4^2:2C2) | 128,809 |
C4.21(C42⋊2C2) = C42.9D4 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.21(C4^2:2C2) | 128,812 |
C4.22(C42⋊2C2) = (C2×C4).28D8 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.22(C4^2:2C2) | 128,831 |
C4.23(C42⋊2C2) = (C2×C4).23Q16 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.23(C4^2:2C2) | 128,832 |
C4.24(C42⋊2C2) = C4⋊C4.Q8 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.24(C4^2:2C2) | 128,833 |
C4.25(C42⋊2C2) = C22⋊C4.Q8 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 32 | 4 | C4.25(C4^2:2C2) | 128,835 |
C4.26(C42⋊2C2) = C24.304C23 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.26(C4^2:2C2) | 128,1226 |
C4.27(C42⋊2C2) = C23.395C24 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.27(C4^2:2C2) | 128,1227 |
C4.28(C42⋊2C2) = C23.397C24 | φ: C42⋊2C2/C22⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.28(C4^2:2C2) | 128,1229 |
C4.29(C42⋊2C2) = D4⋊C4⋊C4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.29(C4^2:2C2) | 128,657 |
C4.30(C42⋊2C2) = C4.67(C4×D4) | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.30(C4^2:2C2) | 128,658 |
C4.31(C42⋊2C2) = C4.68(C4×D4) | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.31(C4^2:2C2) | 128,659 |
C4.32(C42⋊2C2) = C2.(C4×Q16) | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.32(C4^2:2C2) | 128,660 |
C4.33(C42⋊2C2) = C4⋊C4.106D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.33(C4^2:2C2) | 128,797 |
C4.34(C42⋊2C2) = (C2×Q8).8Q8 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.34(C4^2:2C2) | 128,798 |
C4.35(C42⋊2C2) = (C2×C4).23D8 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.35(C4^2:2C2) | 128,799 |
C4.36(C42⋊2C2) = (C2×C8).52D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.36(C4^2:2C2) | 128,800 |
C4.37(C42⋊2C2) = (C2×C4).24D8 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.37(C4^2:2C2) | 128,803 |
C4.38(C42⋊2C2) = (C2×C4).19Q16 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.38(C4^2:2C2) | 128,804 |
C4.39(C42⋊2C2) = C42⋊8C4⋊C2 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.39(C4^2:2C2) | 128,805 |
C4.40(C42⋊2C2) = (C2×Q8).109D4 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.40(C4^2:2C2) | 128,806 |
C4.41(C42⋊2C2) = C23.411C24 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.41(C4^2:2C2) | 128,1243 |
C4.42(C42⋊2C2) = C23.413C24 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 64 | | C4.42(C4^2:2C2) | 128,1245 |
C4.43(C42⋊2C2) = C23.414C24 | φ: C42⋊2C2/C4⋊C4 → C2 ⊆ Aut C4 | 128 | | C4.43(C4^2:2C2) | 128,1246 |
C4.44(C42⋊2C2) = C42⋊5C8 | central extension (φ=1) | 128 | | C4.44(C4^2:2C2) | 128,571 |
C4.45(C42⋊2C2) = C42⋊4C4.C2 | central extension (φ=1) | 128 | | C4.45(C4^2:2C2) | 128,572 |
C4.46(C42⋊2C2) = C4⋊C4⋊3C8 | central extension (φ=1) | 128 | | C4.46(C4^2:2C2) | 128,648 |
C4.47(C42⋊2C2) = (C2×C8).Q8 | central extension (φ=1) | 128 | | C4.47(C4^2:2C2) | 128,649 |
C4.48(C42⋊2C2) = C22⋊C4⋊4C8 | central extension (φ=1) | 64 | | C4.48(C4^2:2C2) | 128,655 |
C4.49(C42⋊2C2) = C23.9M4(2) | central extension (φ=1) | 64 | | C4.49(C4^2:2C2) | 128,656 |
C4.50(C42⋊2C2) = C23.301C24 | central extension (φ=1) | 64 | | C4.50(C4^2:2C2) | 128,1133 |